How-to create a reasonably secure Arduino client that post data into a Rails application – part I

Arduinos get more and more connected and I use an Arduino together with a GSM/GPRS shield to build the wind stations.

But the Arduino is a very limited platform and some (as the Nano) has as little as 1k RAM! Then it becomes a real challenge to do web and HTTP communication. Here I will summarise the experience gathered during the construction of a tiny secure REST client for the Arduino.

Why REST?
Ruby on Rails is the framework I prefer when it comes to write web applications. It is powerful still quite fast to work with. Rails uses REST a lot and it is definite the easiest way to considering the server-side. Though HTML is quite talkative so lots of strings(which take RAM) will be needed in the Arduino, or clever use of PROGMEM with which we can put the strings in ROM.

Secure?
What I mainly want to achieve is to make it hard for someone to send/post false information into the Rails application. For the wind stations it does not matter so much but say we use an Arduino for some kind of real world game. Then some clever hacker could quite easily figure out the URL to make a post and then just start posting in actions or whatever the Arduino controls. So we want to make sure those post requests we receive comes from a unit we have put the software inside.

HMAC
But what kind of authentication should one use? Have read around a bit and regarding REST so seems HMAC(Hash based Message AuthentiCation) a good option and recommended(http://restcookbook.com/Basics/loggingin/). Also found an Arduino lib that supports HMAC called Cryptosuite. It seems at first glance to be really memory efficient (uses PROGMEM) but when reading through the code it seems to use about 196 bytes of RAM which is still quite a lot in these circumstances.

Rails application
Lets start with the Rails application. API_AUTH seems to be a good library to get HMAC support for Rails applications so that was my choice.

Create a new Rails project:

>rail new ArduinoAuthenticatedClientExample

Then using you favourite text editor add API_AUTH to the Gemfile:

gem 'api-auth'

After that do a bundle update to get all gems installed.

> bundle update

Our model is quite simple, we have probes(an Arduino) that can post temperature readings(Measures). So lets create these two:

> rails generate scaffold Probe name:string secret:string
> rails generate scaffold Measure temperature:float

We need to setup the relationships between these models, a probe has many measures and measures belongs to probes. In app/models/probe.rb add:

has_many :measures

and in app/models/measure.rb add:

belongs_to:probe

Now give the following command to generate the migration and have it create the needed index in measures:

rails generate migration AddProbeRefToMeasures user:references

Now it is time to update the database:

rake db:migrate

Add the following code to app/controllers/measures_controller.rb so that all REST calls that modify the model needs to be authenticated using HMAC:

# require any kind of change and creation of a measure to come through our authenticated api using HMAC 
  # and we skip the CSRF check for these requests
  before_action :require_authenticated_api, only: [:edit, :update, :destroy, :create]
  skip_before_action :verify_authenticity_token, only: [:edit, :update, :destroy, :create]

  def require_authenticated_api
    @current_probe = Probe.find_by_id(ApiAuth.access_id(request))
    logger.info request.raw_post # needed due to a bug in api_auth
    # if a probe could not be found via the access id or the one found did not authenticate with the data in the request
    # fail the call
    if @current_probe.nil? || !ApiAuth.authentic?(request, @current_probe.secret) 
      flash[:error] = "Authentication required"
      redirect_to measures_url, :status => :unauthorized
    end
  end 

We added a flash error message in the code above so we need to add support in app/views/layouts/application.html-erb to get that presented:

< % flash.each do |name, msg| -%>
      < %= content_tag :div, msg, class: name %>
    < % end -%>

We want the secret keys generated automatically rather then entered by the user. So in app/controllers/probes_controller.rb, in the create method change so the first lines looks like this:

    @probe = Probe.new(probe_params)
    @probe.secret = ApiAuth.generate_secret_key

And we want to remove the input field. Change in app/views/probes/_form.html.erb so

< %= f.text_field :secret %>

becomes

< %= @probe.secret %>

Now we are almost done but we want to add some more security. We do not want anyone be able to change the secret keys and actually we would like to add user authentication so that like an admin is the only one who ca see the secrets but that is not a task for this tutorial. If you need that see for example the Devise getting started guide. Add the following to app/models/probe.rb so that the secret only can be read and not modified:

attr_readonly :secret

Now you can run the server and start creating probes. Do

> rails server

and create a probe or two by going to http://localhost:3000/probes/

To test that is’s working create a simple client:

require 'openssl'
require 'rest_client'
require 'date'
require 'api_auth'

@probe_id = "2"
@secret_key = "rNwtKjjVZ4UUTQWvL+ZpK1PVjXz5N1uKpYRCfLfTD+ySTMaeswfPhkokN/ttjX3J78KNqclcYLHSw/mzHeJDow=="
    
headers = { 'Content-Type' => "text/yaml", 'Timestamp' => DateTime.now.httpdate}

@request = RestClient::Request.new(:url => "http://localhost:3000/measures.json",
        :payload => {:measure => { :temperature => 12}},
        :headers => headers,
        :method => :post)
        
@signed_request = ApiAuth.sign!(@request, @probe_id, @secret_key)    

response = @signed_request.execute()
puts "Response " + response.inspect

And run that and you should get something like:

Response "{\"id\":19,\"temperature\":12.0,\"created_at\":\"2014-09-30T15:04:26.286Z\",\"updated_at\":\"2014-09-30T15:04:26.286Z\"}"

In part II I describe how to create the client on the Arduino.

Writing RAM efficient Arduino code

Developing the software for the wind stations I often run into problems and random restarts of the Arduino. Soon I realised it was due to that I ran out of RAM, 2k does not last that long, specifically when every debug string you put in consumes RAM. I found out about PROGMEM but I did not find so much more information on how to use it so instead I focused on getting things to work. But now when I re-write the whole communication code I plan to do it right!

So have looked a bit more into it and found the great article Putting constant data into program memory (PROGMEM) by Nick Gammon. It explains the whole problem as well as give many practical tips on how to write RAM efficient Arduino code.

And another recommendation is to use the latest Arduino IDE, the 1.5.8 Beta. It uses much newer compiler etc as described in this post. Also when compiling it generates not only information about how much of the storage space you sketch uses but also how much RAM is used at start. Like this:
Sketch uses 9,412 bytes (30%) of program storage space. Maximum is 30,720 bytes.
Global variables use 1,126 bytes (54%) of dynamic memory, leaving 922 bytes for local variables. Maximum is 2,048 bytes.

Remember that this only indicates the situation at start so do you have functions that use large arrays that will not be shown there.

Debugging HTTP communication over GSM

I’m writing a HTTP client for the Arduino. The debugging options on the Arduino are quite limited. And in general doing low level HTTP programming a tool like SockSpy is invaluable. Though for traffic to reach SockSpy it must be connected to a public TCP IP port. With the common use of firewalls and NATed networks this is generally not the case. How do you solve that?

If you have access to a public server on the internet, SSH is your salvation! Setup a reverse SSH tunnel from your server(yelloworb.com in my case, port 3000) to your local machine(port 2000), then configure SockSpy to connect back to the server(if thats the web server you try to talk HTTP with). Like this:
ssh -R 3000:localhost:2000 yelloworb.com
sockspy 2000 www.server.com 80

And change your code to talk to your server instead(yelloworb.com and port 3000 in my case).

To get the port forwarding working you need to enable GatewayPorts in the sshd configuration. Read here how to do that. The SSHd manpages has more useful information.

How to get PostgreSQL to work with Rails3 on Mac OSX snowleopard

I’m about to host a web app on Heroku and they are using PostgreSQL for database. Followed the instructions and added gem ‘pg’ to my Gemfile and made bundle install but it failed:
Installing pg (0.11.0) with native extensions /Users/kalle/.rvm/rubies/ruby-1.9.2-p290/lib/ruby/site_ruby/1.9.1/rubygems/installer.rb:552:in `rescue in block in build_extensions': ERROR: Failed to build gem native extension. (Gem::Installer::ExtensionBuildError)

Thought I didn’t have PostgreSQL installed so installed it via MacPorts:
sudo port install postgresql90

but still got the same error! After a bit of googling I found out it was due to that the bin folder was not in the path. So by doing this it worked:
export PATH=/opt/local/lib/postgresql90/bin/:${PATH}
env ARCHFLAGS="-arch x86_64" bundle install

Vindmätarbygge – framgångar

Sist jag rapporterade om projektet hade jag bara lyckats kompilera NewSoftSerial men sedan dess har jag lyckats köra det och efter ytterligare en del omkodning bla pga Minins minimala mängd RAM så fungerar det nästan!

Minin har bara 1k RAM så jag kan inte läsa in hela HTML svaret i minnet för det kan mkt väl vara större än så. Eftersom jag bara är intresserad att just nu rapportera in svar och att det går bra skrev jag en ny POST funktion som läser rad efter rad och kollar om en av dem innehåller HTTP/1.1 200 OK så jag vet att det gick bra. Man skulle kunna göra en utökning av GET med som bara returnerar själva XML delen som ett REST anrop ger tillbaka, allt för att nyttja så minimalt med RAM som möjligt.

Dock har jag ett problem kvar, efter att läst en del data så bootar Arduinon om! Jag har lyckats lokalisera det till när jag gör läsning från porten så gissar att NewSoftSerial inte klarar sig så bra i mycket minnes begränsat utrymme. Någon som har bra tips om hur man lätt debuggar dessa typer av problem? Bara göra massa print känns för osäkert då det kan uppstå timing problem etc…